初三数学教学工作计划模板汇编九篇
时间就如同白驹过隙般的流逝,成绩已属于过去,新一轮的工作即将来临,是时候写一份详细的计划了。那么你真正懂得怎么写好计划吗?以下是小编精心整理的初三数学教学工作计划9篇,希望对大家有所帮助。
初三数学教学工作计划 篇1一、指导思想:
九年级数学以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。
二、教学内容
本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。
三、教学目标
知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
四、教学措拖
1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。
2、教学速度以适应大多学生为主,尽量兼顾后进生,注重整体推进。
3、新课教学中涉及到旧知识时,对其作相应的复习回顾。
4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
初三数学教学工作计划 篇2高耸入云的建筑物,海洋石油钻井平台、人造地球卫星等等,都是人类数学智慧的结晶。接下来我们大家一起了解初三数学点和圆的位置关系教学计划。
(一)创设情境 导入新课
活动一:观察
我国射击运动员在奥运会上获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?
提示:解决这个问题要研究点和圆的位置关系.
活动二:问题探究
问题1:观察图中点a,点b,点c与圆的位置关系?
点a在圆内,点b在圆上,点c在圆外
问题2:设⊙o半径为r,说出来点a,点b,点c与圆心o的距离与半径的关系:oa< r,ob = r,oc >r
问题3:反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?
设⊙o的半径为r,点p到圆心的距离op = d,则有:
点p在圆内d点p在圆上d=r点p在圆外d>r例题讲解 如图所示,已知矩形abcd的边ab=3cm,ad=4cm.
(1)以点a为圆心,4cm为半径作⊙a,则点b、c、d与⊙a的位置关系如何?
(二)合作交流 解读探究
活动三
你知道击中靶上不同位置的成绩是如何计算的吗 ?
射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.
活动四:探究
(1)如图,做经过已知点a的圆,这样的圆你能做出多少个?
(2)如图做经过已知点a、b的圆,这样的圆你能做出多少个?他们的圆心分布有什么特点?
思考
经过不在同一条直线上的三点做一个圆,如何确定这个圆的圆心?
分析:如图 三点a、b、c不在同一条直线上,因为所求的圆要经过a、b、c三点,所以圆心到这三点的距离相等,因此这个点要在线段ab的垂直的平分线上,又要在线段bc的垂直的平分线上.
1.分别连接ab、bc、ac
2.分别作出线段ab的垂直平分线l1和l2,设他们的交点为o ,则oa=ob=oc;
3.以点o为圆心,oa(或ob、oc)为半径作圆,便可以作出经过a、b、c的圆.
由于过a、b、c三点的圆的圆心只能是点o,半径等于oa,所以这样的圆只能有一个,即:
结论:不在同一条直线上的三点确定一个圆.
经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,
外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.
(三)应用迁移 巩固提高
1、判断下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( ).
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )
2、如图,已知等边三角形abc中, 边长为6cm,求它的外接圆半径.
3、如图,已知 rt⊿abc 中 ,若 ac=12cm,bc=5cm,求的外接圆半径.
(四)总结反思 拓展升华
总结:1、本节学习的数学知识:(1)点和圆的位置关系;(2)不在同一直至线上的三点确定一个圆。
2、本节学习的数学方法是数形结合
初三数学教学工作计划 篇3一、教学目标
1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2.会进行简单的二次根式的除法运算;
3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4. 培养学生利用二次根式的除法公式进行化简与计算的能力;
5. 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;
6. 通过分母有理化的教学,渗透数学的简洁性.
二、教学重点和难点
1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.
2.难点:二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根 ……此处隐藏6091个字……p>
本学期所教初三数学包括第一章 证明(二),第二章 一元二次方程,第三章 证明(三),第四章 视图与投影,第五章 反比例函数,第六章 频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数 这两章是与数及数的运用有关的。频率与概率 则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》, 《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》, 《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
初三数学教学工作计划 篇91、重视课本,系统复习。
现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是高于教材,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。必须深钻教材,绝不能脱离课本,应把书中的内容进行归纳整理,使之形成结构。课本中的例题、练习和作业要让学生弄懂、会做,书后的读一读、想一想、试一试,也要学生认真想一想,集中精力把九年级和八年级下的教学内容等重点内容的例题、习题逐题认认真真地做一遍,并注意解题方法的归纳和整理。一味搞题海战术,整天埋头让学生做大量的课外习题,其效果并不明显,有本末倒置之嫌。
教师在这一阶段的教学主要按知识块组织复习,可将代数部分分为六章节:
第一章:数与式;第二章:方程与不等式;第三章函数;第四章:基本图形;第五章:图形与变换;第六章:统计与概率。复习中可由教师提出每个章节的复习提要,指导学生按提要复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,还要注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。
2、重视对基础知识的理解和基本方法的指导。
基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。
每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。
3、重视对数学思想的理解及运用。
如告诉了自变量与因变量,要求写出函数解析式,或者用函数解析式去求交点等问题,都需用到函数的思想,教师要让学生加深对这一思想的深刻理解,多做一些相关内容的题目;再如方程思想,它是利用已知量与未知量之间联系和制约的关系,通过建立方程把未知量转化为已知量;再如数形结合的思想,不少同学解这类问题时,要么只注意到代数知识,要么只注意到几何知识,不会熟练地进行代数知识与几何知识的相互转换,建议复习时应着重分析几个题目,让学生悉心体会数形结合问题在题目中是如何呈现的和如何转换的。
4、综合运用知识,加强能力培养。
这个阶段的复习目的是使学生能把各个章节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。如果说第一阶段是总复习的基础,是重点,侧重双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。
这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。
文档为doc格式